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Conf ormally flat, anisotropic spheres in general relativity 

B W Stewart 
Department of Physics, Thomas More College, Fort Mitchell, KY 41017, USA 

Received 11 February 1982 

Abstract. We examine anisotropic (principal stresses unequal), conformally flat, spherically 
symmetric interior solutions. The properties of several solutions are compared with those 
of the conformally flat Schwarzschild interior. 

1. Introduction 

Certainly no real astrophysical object is composed of a perfect fluid. Despite this, 
perfect fluid space-times have been widely studied as models, for instance, of neutron 
stars. In most astrophysical applications, it seems that perfect fluid models are 
adequate. However, possibly important changes in properties may occur when dealing 
with non-perfect fluid sources in highly compact bodies. 

Recently, theoretical work on realistic stellar models has suggested that supradense 
stellar matter may be locally anisotropic (principal stresses unequal). This anisotropy 
could be the result of, for instance, a neutron crystalline core. Motivated by this 
possibility, several workers have examined the properties of locally anisotropic matter 
in strong gravitational fields. Bowers and Liang (1974), Herrera et a1 (1979) and 
Cosenza et a1 (1981) have examined how anisotropic matter affects the critical mass, 
maximum redshift, stability, etc of highly compact bodies. They have determined that 
in many cases the maximum equilibrium mass and surface redshift are increased over 
the isotropic (perfect fluid) values. Concerning stability, it was found that certain 
models were more stable if the matter was anisotropic whereas other models were 
less stable. Yodzis et a1 (1973) have found that naked singularities can occur in the 
spherical gravitational collapse of anisotropic matter. 

Since realistic equations of state in supradense nuclear matter are not known even 
in the relatively simple perfect fluid case, the present author (Stewart 1981) has 
investigated a large collection of anisotropic interior solutions in an attempt to glean 
from them some generic behaviour. It would seem that, perhaps contrary to one’s 
intuition, the tangential stresses are more important in support against gravitational 
collapse than the radial stress. 

Given the difficulty in prescribing a realistic equation of state for anisotropic matter, 
the common procedure for finding such models has been to specify an ad hoc relation 
between the tangential and radial stresses, or to specify a relation involving the metric 
functions. Neither of these methods is completely satisfactory. In this paper we look 
for anisotropic models in which the mass distribution is specified and in which the 
mathematical requirement of conformal flatness is made. We do not assert that 
conformally flat solutions are any more physically reasonable than perfect fluid 
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solutions. However, there has been much recent interest in conformally flat space- 
times (Banerjee and Santos 1981a, b, Reddy 1979). As is well known, the constant 
density Schwarzschild solution is the unique conformally flat, static perfect fluid 
space-time. However, if the perfect fluid requirement is relaxed, one may in principle 
obtain many conformally flat models. In order to ensure that the models are physically 
reasonable, the mass distributions that we will examine contain parameters which can 
be chosen so that the models approach the constant density solution. Therefore, in 
a certain range of parameters, the solutions obtained approximate perfect fluid 
solutions. 

It has been shown by Bondi (1964) that for perfect fluids? the largest value of the 
ratio of mass to radius is $. This maximum value is attained in the constant density 
solution. In this work we will examine how the maximum value of this ratio changes 
for other conformally flat, but non-perfect fluid, solutions. 

This paper is organised as follows. In 8 2 we examine the Einstein field equations 
in the case of a static, spherically symmetric energy-momentum tensor and a confor- 
mally flat line element. We utilise the remaining freedom in the field equations to 
choose the functional form of the mass distribution. Section 4 contains four example 
solutions and an examination of some of their properties. Next we look at conformally 
flat, slowly rotating solutions. The last section contains a short discussion of the results. 

2. Field equations and boundary conditions 

We begin by examining the most general static, spherically symmetric, conformally 
flat line element as given by Banerjee and Santos (1981a): 

ds2 = e2” [ (cp2 + b)2  dt2 - dp2 - p 2  df12], 

dn2=de2+sin2  8 dq$2 

where 

= 4 P ) ,  b, c are constants. 

We will perform a coordinate transformation to Schwarzschild curvature coordinates 

e“p = r. (2) 

ds2 = ezV(c e-2qr2 + b)2 dt2 - (1 - r ~ ’ ) ~  dr2 - r2 d o 2  ( 3 a )  

Then 

where 

d r )  = 4 P ) ,  (3b)  

’ = d/dr. (3c) 

In order to check if this line element is indeed conformally flat for any cp(r), we use 
the fact that for the line element 

(4a) ds2 = e@ dt2 - eA dr2 - r2 df12, 

t This work applies only to perfect fluid solutions in which the density is a non-increasing function of the 
radial coordinate. 
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where 

(U = p u r ) ,  A = A  ( r ) ,  

the space-time is conformally flat if (Takeno 1966) 

( 5 )  
expA 1 p f 2  p'A' p" ( A I - p ' )  

r2 r2 4 4 2 2r 0. + ---- ---= 

Direct substitution of equation (3) into equation ( 5 )  verifies the conformal flatness of 
(3) .  

If we define 

( r 2  - 2mr)-'/', (6a) E r - l  - 

m = m ( r )  =mass distribution, ( 6 b )  

then equation (3) can be rewritten as 

ds2 = e2*(c e-2pr2 + b)' dt2 - (1 - 2m/r)- l  dr2 - r2 dR2. (7) 

Next we adopt the form of the energy-momentum tensor for an anisotropic fluid used 
by Letelier (1980): 

(8) 

where U, is the anisotropic fluid four-velocity, x, is a space-like unit four-vector that 
points in the direction of the anisotropy, p is the usual rest energy density of the 
fluid, r is the pressure on a plane perpendicular to the anisotropy direction, and U 

is the pressure along the anisotropy direction. 
In the static case, the field equations for the line element (7) are (Tolman 1962) 

(units 8rG = c = 1) 

TWy = ,UU,U, +(a - r)x ,x ,  - . i r k p y  - u,u,) 

(9a) 2 T: = p  = 2 m ' l r  , 

Examination of the system (9) reveals that we have four unknowns (p,  a, r, m )  and 
only three independent equations (9a, b, c). Therefore the freedom exists to choose, 
for example, the functional form of the mass distribution, m(r). 

The boundary conditions, in order to match the interior solutions to the vacuum 
Schwarzschild solution, are (Bonnor and Vickers 1981): 

gll is CO, goo, g22,  g 3 3  are C', 
on the boundary of the body, r = a. 

Application of ,these conditions yields 
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3. The mass distribution 

We proceed by choosing some physically reasonable forms for the mass distribution, 
m(r) .  p is then found by the integration of equation (6a). The criteria to be used 
here to determine physical reasonableness are the following. 

(i) m ( r )  3 0. Only positive mass is allowed. 
(ii) m”r - 2m‘ 6 0. This is equivalent to requiring non-increasing (as r increases) 

(iii) lim,+o m(r) / r  = 0. Only finite mass density is allowed. 
(iv) All physical variables are finite everywhere in the body. 
(v) We require that goo, gll are finite and non-zero everywhere in the interior, 

(vi) Finally we require that the pressure is finite and non-negative. 

mass density, i.e. ~ ’ s 0 .  

with no changes of sign nor loss of reality allowed. 

Integration of the relation in requirement (ii) yields 

m’(r) s Ar2, A =constant. 

Further integration, with requirement ( 5 )  in mind, leaves 

m ( r ) s A r 3 / 3 .  

The equality holds for the constant density solution. One can see that (a) as long as 
lim,,o 2m/r + 0 at least as fast as r 2 ;  (b) eq is finite and non-zero; and (c) the constant 
b is non-zero, then ( ~ ( r  = 0) is finite. In fact, assuming that 

2m/r = rr2 + o(r3) as r + 0, r = constant, (11) 

a(r+ 0) = (4c/b) e-2qp(r=o)- 2r. ( 1 2 )  

It is clear that as long as r, C, and e-2q(r=o) are finite and non-zero, the radial stress 
is infinite if 2Mla = $, where b vanishes. 

We next present four examples of mass distributions which satisfy the above 
requirements. 

then 

Example (1) 

2m(r)  = r[l  -(sin2 Kr) /K2r2] ,  K =constant. ( 1 3 )  

2m(r)  = r tanh’ Kr, K = constant, (14) 

2m(r)  = r [ l  -exp(-Br’)], B = constant, (15) 

2m(r)  = A ( $ r 3 - a r S / 5 u 2 ) ,  A,  cy =constant. (16) 

Example (2) 

Example (3) 

Example (4) 

We will examine some properties of the solutions found using the above forms for 
the mass distribution in the next section. 



Conformally flat, anisotropic spheres in GR 2423 

4. The solutions 

In this section, we will examine the properties of the solutions, with a bit more 
emphasis on the two-parameter solution (4). 

Example (1) 

In this example we choose as the mass distribution the function 

2m ( r )  = r [  1 - (sin2 Kr) /K2r2] .  

Thus from (9a)  

We can integrate equation (6a) to obtain 
e2v - -4K2r2cot2 iKr  1 

e2clr=0= I .  

where the constant of integration has been chosen so that 

Then 
sin2Kr 1 sin 2Kr A = T  1 - 2 -  +- -) 

r ( K2r2 2 Kr ‘ 

The constant K is found from the boundary conditions by solving 

(sin K a ) / K a  = (1 - ~ M / u ) ” ~ .  ( 2 1 )  

Since for 2M/a = $ the central stresses are infinite, we will require that 2M/a 4 $. We 
can solve ( 2 1 )  graphically to find the restriction of K to be approximately 

K s 2%/40a. (22 )  
The mass density and stresses are non-negative, monotonically decreasing functions 
of the radial coordinate, at least for a range of K .  A,  the deviation from perfect 
fluidity, is a non-negative function of r. A ( r  = 0) vanishes. For different values of K,  
A can be both increasing and decreasing in the interior. In the limit K + 0 flat 
space-time results. For I( small but non-zero, the solution differs only slightly from 
the constant density solution. 

Example (2) 

The mass distribution was taken to be 

2m(r) = r tanh’ Kr. 

From ( 9 a )  

1 ( r )  = r-’ tanh2 Kr + r-’2K tanh Kr sech’ Kr. 

Integration of equation (6a )  yields 

(Kr)’” 
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where we have again chosen the constant of integration so that 
2@ e I r = , , =  1. 

From ( 9 4  
1 tanh Kr 
r2 cosh2 Kr 

A = -  (sinh 2Kr - 2Kr). 

Application of the boundary conditions yields 

U 

The restriction that 2M/a < implies for K 

Ka d 1.76. 

The mass density and stresses are non-negative, monotonically decreasing functions 
of r at least for a range of K. A is a non-negative function of r. A(r = 0) vanishes. 
For different values of K, A can be both increasing and decreasing in the interior. In 
the limit K + 0, again flat space-time results. For K small but non-zero, the solution 
differs only slightly from the constant density solution. 

Example (3) 

In this case the mass distribution is given by 

2m (r) = r [  1 - exp(-~r*)].  

Thus 

p ( r )  = f2[1 -exp(-Br2)]+2B exp(-Br2). 

Integration of ( 6 a )  yields 

Again 
e 2Q Ir=O=l .  

From (9d) 

A = (2/r2)[1 - exp(-Br*) - Br2 exp(-Br2)]. (32) 

B = -a-* I n ( l - 2 ~ / a ) .  (33) 

B < In 9. (34) 
The mass density and stresses are non-negative, monotonically decreasing functions 
of r, at least for a range of B. A is a non-negative function of r ;  A(r = 0) vanishes. 
For different values of B, A can be both increasing and decreasing in the interior. In 
the limit B + 0, flat space-time results. For B small but non-zero the solution differs 
only slightly from the constant density solution. 

The boundary conditions yield 

The condition that 2M/a < $ implies 
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Example (4) 

The previous three solutions each contained one parameter which was related, via 
the boundary conditions, to the value of 2M/a. In this example, however, we present 
in more detail a two-parameter solution. The mass distribution is 

2m(r)  = A(5r3 -ar5 /5az ) ,  A, a =constant. ( 3 5 )  

p ( r )  = A ( l  - a r 2 / a 2 ) ,  O S a G l .  (36)  

A = gAarZ + 0 asr+O.  (37) 

Then 

The restrictions on a are due to the requirement that p ( r )  5 0 for 0 s r G a.  Also 

Integrating (6a ), 

ezq = $ [ 1 + ( 1  -fAr2+aAr/5a2)1’z-,$Ar2],  ezq I r Z O  = 1 .  (38) 
The boundary conditions yield 

A = ( 6 M / a 3 ) ( 1  -$a)-’. (39) 
The constant b in equation ( l o b )  is real as long as 

2M/a a ( 1  +)U 5 f f .  

A curious upper limit is placed upon the value of a by the requirement of non-negative 
stresses. For small values of 2M/a,  it is 

10M/8a >a. (41)  
Of course a can always be chosen to satisfy equation (41).  

For a + 0, we have the incompressible fluid Schwarzschild solution. The stresses 
and mass density, for a range of a > 0, are non-negative, monotonically decreasing 
functions of r. A is a non-negative, monotonically increasing function of r. A(r  = 0) 
vanishes. 

This model is almost certainly more stable than the Schwarzschild interior since 
the mass density for a > O  is a decreasing function. In table 1, we have listed the 
comparative values of the central stresses for selected values of the ratio 2M/a.  It 
can be readily seen that the central pressure in the Schwarzschild case is larger for a 
given value of 2M/a than in the a > 0 model. This is another indication of increased 
stability. 

Table 1. Comparison of values of azo  ( r  = 0) for the solution, (41, (a  = 0.1) and the 
Schwarzschild solution (a = 0). 

2m/a azu  (Schwarzschild) a2u  (solution (4)) 

0.88 43.98 42.45 
0.77 2.74 2.55 
0.66 1.10 0.98 
0.55 0.54 0.45 
0.44 0.27 0.20 
0.33 0.12 0.08 
0.22 0.05 0.02 
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5. Slowly rotating conformally flat interior solutions 

Much interest has been present recently in examining the properties of relativistic 
rotating perfect fluids. Due to the difficulties encountered by workers in obtaining a 
perfect fluid solution which would serve as a source for the Kerr metric, interest has 
developed in the examination of solutions of the Brill-Cohen (1966) ‘slowly rotating’ 
formalism. We have attempted to find solutions to the ‘slow rotation’ structure 
equations which were conformally flat and physically reasonable. Unfortunately, if 
one restricts one’s attention to those interior solutions in which no singularities are 
present, it is found that no such slowly rotating conformally flat solutions exist. This 
is demonstrated in the appendix. Since slow rotation is an analytic limit of the general 
problem, it would seem that no singularity-free, conformally flat, rotating interior 
solution may be possible. 

6. Conclusions 

In this work we have examined static, spherically symmetric, conformally flat interior 
solutions. The form of the energy-momentum tensor that we have assumed is the 
most general allowed under the symmetries imposed upon the metric (static line 
element, spherical symmetry). Even after the imposition of the mathematical require- 
ment of conformal flatness, freedom exists to specify the functional form of the mass 
distribution. We have used this freedom to develop four physically reasonable models 
of anisotropic fluids. 

Analysis would seem to indicate that although the maximum value of the ratio 
2M/a is not increased from its maximum perfect fluid value of 5, the anisotropic fluid 
models are more stable than the constant density solution. In fact, the maximum ratio 
of 2M/a is independent of the particular choice for the (finite) mass distribution, since 
it follows almost solely from the boundary conditions on the constants c and b from 
equation (10). Thus one would expect this to be a property common to all physically 
reasonable conformally flat space-times. 

Another rather interesting property of these solutions involves the Weyl tensor 
discontinuity across the boundary of the body. Shepley (1968) has examined the 
discontinuity of the Weyl tensor: 

C E U P  [C”@,] = c1p5vs  - va 

where CIngyS is the Weyl tensor of the interior space-time and CEpPys is the Weyl 
tensor of the exterior (vacuum) space-time. He was able to show that for perfect 
fluid solutions the discontinuity was of type D across a fluid-vacuum boundary. In 
the case under consideration in this work this is also the case since CIaayg = 0 and 
CEnSy6 is type D for the vacuum Schwarzschild solution. 

Appendix 

The conditions of slow rotation lead to the metric 

ds2 = -A dt2 + B dr2 + r2[de2 +sin2 B(d4 - R dt)’] 

where A, B and are functions of r only. The conditions of conformal flatness are 
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that the components of the Weyl tensor 
1 

Cabcd E R a b c d  4- bR (gacgbd - g a d g b c )  - I ( g a c R b d  - g b c R a d  + g b d R a c  - g a d R b c )  

vanish where Rab is the Ricci tensor (Rab = Rfacb), R is the Ricci scalar (R  = R,") and 
Rabcd is the Riemann tensor (a, b, c, d take values from 0 to 3). In particular 

c l 2 3 0  = Riz30 + i R  (gi,g2o-giog23)-~(gi3Rzo-g23R i o  + g2oR 13 - g i o R z 3 )  

wherex = t ,  x = r , x  = 6 , x  =q5. 0 1 2 3 

The only non-vanishing off -diagonal component of the metric tensor is 

go3 = g30 = -2r' sin2 602; thus Cl230 = R 1230. 

This particular component of the Riemann tensor is given by 

RI230 = -r2 cos 6 sin 6Afl'/(5r2f12 sin' 6 +A). 

Thus the only way that Cl230 can vanish everywhere in the interior is if fl = constant. 
If fl is a non-vanishing constant, the interior will possess a ring-like singularity in the 
equatorial plane. Thus a singularity-free conformally flat, slowly rotating interior 
solution would seem to be impossible. 
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